新型催化剂主要由更便宜的钴制成,取代质子交换膜(PEM)电解槽中昂贵的铱
致力于电解槽和燃料电池商业化的领先研发公司Giner公司在工业条件下测试了这种新型催化剂,注意到其优越的性能和耐用性
这一创新支持了美国能源部的“氢能地球Earthshot”计划,旨在大幅降低绿色氢气生产成本
中国石化新闻网讯 据油价网2023年8月16日报道,能源和环境科学领域顶尖研究中心美国阿贡国家实验室(ANL)的一个团队日前开发出了一种由地球上丰富元素组成的新型催化剂。它可以使低成本和节能的氢气生产成为可能,用于运输和工业应用。
由美国能源部阿贡国家实验室领导的一个由多机构组成的团队日前开发出了一种低成本的催化剂,用于从水中产生清洁氢气的过程。其他贡献者包括美国能源部的桑迪亚国家实验室和劳伦斯伯克利国家实验室,以及Giner公司。
研究结果日前发表在《科学》杂志上。
阿贡国家实验室高级化学家刘迪佳(音译)说:“一种从水中产生氢气和氧气的电解过程已经存在了一个多世纪。”这位高级化学家芝加哥大学普利兹克分子工程学院担任联合研究员。
质子交换膜(PEM)电解槽代表了这一过程的新一代技术。它们能在接近室温的条件下以更高的效率将水分解成氢气和氧气。减少的能源需求使它们成为使用可再生但间歇性的能源(如太阳能和风能)生产清洁氢气的理想选择。
这种电解槽的每个电极(阴极和阳极)都有单独的催化剂。阴极催化剂生成氢气,而阳极催化剂生成氧气。问题是阳极催化剂使用铱,目前的市场价格约为每盎司5000美元。铱的供应不足和高成本是PEM电解槽广泛采用的主要障碍。
而新催化剂的主要成分是钴,它比铱便宜得多。刘迪佳说:“我们试图在PEM电解槽中开发一种低成本的阳极催化剂,以高通量产生氢气,同时消耗最少的能量。”“通过使用我们的方法制备的钴基催化剂,可以消除在电解槽中生产清洁氢气的主要成本瓶颈。”
Giner公司是一家致力于电解槽和燃料电池商业化的领先研发公司,在工业操作条件下使用其PEM电解槽试验站对新型催化剂进行了评估。性能和耐用性远远超过竞争对手的催化剂。
了解电解槽操作条件下原子尺度上的反应机理对进一步提高催化剂性能具有重要意义。该团队通过使用阿贡国家实验室先进光子源(APS)的X射线分析,破译了催化剂在操作条件下发生的关键结构变化。他们还在桑迪亚实验室和阿贡纳米材料中心(CNM)使用电子显微镜鉴定了催化剂的关键特征。 APS和CNM都是美国能源部科学办公室的用户设施。
阿贡国家实验室材料科学家文建国(音译)说:“我们在制备的各个阶段对新催化剂表面的原子结构进行了成像。”
此外,伯克利实验室的计算模型揭示了这种新型催化剂在反应条件下的耐久性的重要论述。
这个团队的成就意味着美国能源部的“氢能地球”计划向前迈出重要一步,该计划模仿了20世纪60年代美国太空计划的“月球计划”。其雄心勃勃的目标是在十年内将绿色氢气生产的成本降低到每公斤1美元。以这种成本生产绿色氢气可能会重塑美国经济。应用领域包括电网、制造业、交通运输以及住宅和商业供暖。
刘迪佳说:“更一般地说,我们的研究结果为用更便宜、更丰富的元素取代昂贵的贵金属催化剂开辟了一条有前途的道路。”
除刘迪佳外,阿贡国家实验室的作者还有钟丽娜(现就职于上海交通大学)、文建国、徐海平、杰里米·克鲁普夫、徐文茜和林晓敏。伯克利实验室的作者包括高国平、李海霞和王玲旺。来自桑迪亚实验室的作者是Joshua D. Sugar。撰稿人是Zach Green和徐辉(音译)来自Giner公司。
李峻 译自 油价网
原文如下:
Cost-Effective Catalyst To Supercharge Green Hydrogen Production
· The catalyst, primarily made of cheaper cobalt, replaces costly iridium in Proton Exchange Membrane (PEM) electrolyzers.
· Giner Inc. tested the catalyst under industrial conditions, noting its superior performance and durability.
· This innovation supports the DOE's Hydrogen Energy Earthshot initiative, aiming to drastically reduce green hydrogen production costs.
An Argonne National Laboratory team has developed a new catalyst composed of elements abundant in the Earth. It could make possible the low-cost and energy-efficient production of hydrogen for use in transportation and industrial applications.
A multi-institutional team led by the U.S. Department of Energy’s (DOE) Argonne National Laboratory has developed a low-cost catalyst for a process that yields clean hydrogen from water. Other contributors include DOE’s Sandia National Laboratories and Lawrence Berkeley National Laboratory, as well as Giner Inc.
The results outlining research have been published in Science.
“A process called electrolysis produces hydrogen and oxygen from water and has been around for more than a century,” said Di-Jia Liu, senior chemist at Argonne. He also holds a joint appointment in the Pritzker School of Molecular Engineering at the University of Chicago.
Proton exchange membrane (PEM) electrolyzers represent a new generation of technology for this process. They can split water into hydrogen and oxygen with higher efficiency at near room temperature. The reduced energy demand makes them an ideal choice for producing clean hydrogen by using renewable but intermittent sources, such as solar and wind.
This electrolyzer runs with separate catalysts for each of its electrodes (cathode and anode). The cathode catalyst yields hydrogen, while the anode catalyst forms oxygen. A problem is that the anode catalyst uses iridium, which has a current market price of around $5,000 per ounce. The lack of supply and high cost of iridium pose a major barrier for widespread adoption of PEM electrolyzers.
The main ingredient in the new catalyst is cobalt, which is substantially cheaper than iridium. “We sought to develop a low-cost anode catalyst in a PEM electrolyzer that generates hydrogen at high throughput while consuming minimal energy,” Liu said. “By using the cobalt-based catalyst prepared by our method, one could remove the main bottleneck of cost to producing clean hydrogen in an electrolyzer.”
Giner Inc., a leading research and development company working toward commercialization of electrolyzers and fuel cells, evaluated the new catalyst using its PEM electrolyzer test stations under industrial operating conditions. The performance and durability far exceeded that of competitors’ catalysts.
Important to further advancing the catalyst performance is understanding the reaction mechanism at the atomic scale under electrolyzer operating conditions. The team deciphered critical structural changes that occur in the catalyst under operating conditions by using X-ray analyses at the Advanced Photon Source (APS) at Argonne. They also identified key catalyst features using electron microscopy at Sandia Labs and at Argonne’s Center for Nanoscale Materials (CNM). The APS and CNM are both DOE Office of Science user facilities.
“We imaged the atomic structure on the surface of the new catalyst at various stages of preparation,” said Jianguo Wen, an Argonne materials scientist.
In addition, computational modeling at Berkeley Lab revealed important insights into the catalyst’s durability under reaction conditions.
The team’s achievement is a step forward in DOE’s Hydrogen Energy Earthshot initiative, which mimics the U.S. space program’s “Moon Shot” of the 1960s. Its ambitious goal is to lower the cost for green hydrogen production to one dollar per kilogram in a decade. Production of green hydrogen at that cost could reshape the nation’s economy. Applications include the electric grid, manufacturing, transportation and residential and commercial heating.
“More generally, our results establish a promising path forward in replacing catalysts made from expensive precious metals with elements that are much less expensive and more abundant,” Liu noted.
In addition to Liu, Argonne authors are Lina Chong (now at Shanghai Jiao Tong University), Jianguo Wen, Haiping Xu, A. Jeremy Kropf, Wenqian Xu and Xiao-Min Lin. Authors from Berkeley Lab include Guoping Gao, Haixia Li and Ling-Wang Wang. The author from Sandia Labs is Joshua D. Sugar. Contributors Zach Green and Hui Xu are from Giner Inc.